
The RPI team has started looking into the issues associated with making a “thread safe PUMI

mesh” and the reordering of unknowns. We were originally thinking that something quick could

be done to get us part way towards a thread safe assembly procedure. Although that is true, the

performance and scalability will be limited. Thus we do want to start the discussion on the more

extensive developments that will be required since it should involve the solvers tram from the

beginning.

Providing ability to query a given mesh stored in PUMI in a thread safe manner requires no

major developments since existing data is simply being accessed, not being modified. This is the

case for M3D-C1 analysis runs (without mesh adaptation); the mesh topology and associated

field data is ‘read only’. Thread safe mesh modification operations are significantly more

challenging. (We have a different version of our structures and adaptation procedure to support

this, but other than lessons learned, it is not of importance for the current discussion/needs.)

The real issue is avoiding race conditions when writing matrix and vector entries during a

threaded assembly of the global matrix and right hand side.

The current assembly procedure uses MPI based parallelism to assemble the element stiffness

matrix terms into the global matrix based on a partitioned mesh directly using the solver

assembly technologies.

Moving forward, a thread safe assembly procedure will require either:

 Coloring the elements in the partition on that process such that the elements of any

specific color share no dof with any other elements of the same color. Thus, any of the

elements of a given color can be assembled at the same time as any other element with

the same color.

 Define an independent set of elements – that is elements that share no dof with others in

that set. Process the elements in that set in parallel. Repeat until all elements are

processed. We have an implementation of maximal independent set computation in

PUMI.

In terms of a matrix assembly process based on either approach we have two options for the

actual assembly.

A. Use solver support for threaded assembly. One possible approach would involve the

normal preprocessing required to tell the solver what they need to know to set-up the

structures for the “matrix” and vector to be assembled, followed by color-by-color (or

set-by-set) processing using solver controlled threads, possibly using a callback

mechanism to get the element contributions, or simply pre-computing them. A brief

review of the PETSC and STRUMPACK documentation indicates that threaded assembly

is not supported.

B. External creation of the process level assembled portions of the global system. Towards

this, we would perform the preprocessing necessary to initialize the matrix and vector

structures (as in A), then process each color/set using PUMI/M3D-C1 controlled threads.

The process level assembled portions of the system are then passed to the equation solver

using single threaded solver APIs.

It is not clear if the first approach is possible, and we would need substantial help from Sherry

and/or Sam for the second. Clearly, we very much need Sherry and Sam involved in the decision

process. Once we decide on the approach, we can determine who should do which parts and how

we coordinate for debugging.

Note that given the level of effort and coding that will be involved to support threaded assembly,

we propose doing the equation reordering work (as discussed a few weeks ago) concurrently

instead of as a separate phase/effort.

